Question 26: \(\text { Find } x \text { in an integer such that the expression } A=\frac{x-13}{x+3} \text { reaches the minimum value. }\)
\(\mathrm{A}=\frac{x-13}{x+3}=\frac{(x+3)-16}{x+3}=1-\frac{16}{x+3} \)
It’s easy for A min \(\frac{16}{x+3}{ }_{\max } \Rightarrow(x+3) \min \Leftrightarrow \mathrm{x}_{\text {min }}\)
If x+3<0$\, the smallest value of A cannot be found
If \(x+3>0 \Leftrightarrow x>-3\) where x is integer \((x+3) _\min\) when x=-2
===============