Question 17: Given the function y = x4- 2( 1 – m2) x2+ m+1. There exists a value of m so that the function has a maximum, a minimum and the extreme points of the graph of the function form a triangle with the largest area. Which statement is correct then?
We have the derivative y’ = 4x3– 4(1 – m .)2) x
\(y’ = 0 \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
{x^2} = 1 – {m^2}
\end{array} \right.\)
Hàm số có cực đại, cực tiểu khi và chỉ khi -1 < m <1
Tọa độ điểm cực trị
Phương trình đường thẳng BC: y+ m4- 2m2- m=0
d( A: BC) = m4-2m2+ 1,
jQuery(document).ready(function($) { $('#facebook-after-2360').sharrre({ share: { facebook: true }, urlCurl: 'https://qamath.com/wp-content/plugins/genesis-simple-share/assets/js/sharrre/sharrre.php', enableHover: false, enableTracking: true, disableCount: true, buttons: { }, click: function(api, options){ api.simulateClick(); api.openPopup('facebook'); } }); $('#twitter-after-2360').sharrre({ share: { twitter: true }, urlCurl: 'https://qamath.com/wp-content/plugins/genesis-simple-share/assets/js/sharrre/sharrre.php', enableHover: false, enableTracking: true, buttons: { }, click: function(api, options){ api.simulateClick(); api.openPopup('twitter'); } }); $('#pinterest-after-2360').sharrre({ share: { pinterest: true }, urlCurl: 'https://qamath.com/wp-content/plugins/genesis-simple-share/assets/js/sharrre/sharrre.php', enableHover: false, enableTracking: true, buttons: { }, click: function(api, options){ api.simulateClick(); api.openPopup('pinterest'); } }); $('#linkedin-after-2360').sharrre({ share: { linkedin: true }, urlCurl: 'https://qamath.com/wp-content/plugins/genesis-simple-share/assets/js/sharrre/sharrre.php', enableHover: false, enableTracking: true, buttons: { }, click: function(api, options){ api.simulateClick(); api.openPopup('linkedin'); } }); });