• Menu
  • Skip to primary navigation
  • Skip to secondary navigation
  • Skip to main content
  • Skip to primary sidebar

QA Math

Question Anwer Mathematics online

  • QA Grade 1 Math
  • QA Grade 2 Math
  • QA Grade 3 Math
  • QA Grade 4 Math
  • QA Grade 5 Math
  • Search
  • Home
  • ABOUT US
  • Privacy Policy
  • Contact Us
  • Sitemap
  • QA Grade 1 Math
  • QA Grade 2 Math
  • QA Grade 3 Math
  • QA Grade 4 Math
  • QA Grade 5 Math
  • Search
You are here: Home / Functions and applications / Question 17: Given the function y = x4- 2( 1 – m2) x2+ m+1. There exists a value of m so that the function has a maximum, a minimum and the extreme points of the graph of the function form a triangle with the largest area. Which statement is correct then?

Question 17: Given the function y = x4- 2( 1 – m2) x2+ m+1. There exists a value of m so that the function has a maximum, a minimum and the extreme points of the graph of the function form a triangle with the largest area. Which statement is correct then?

14/08/2021 //  by admin//  Leave a Comment

Question 17: Given the function y = x4- 2( 1 – m2) x2+ m+1. There exists a value of m so that the function has a maximum, a minimum and the extreme points of the graph of the function form a triangle with the largest area. Which statement is correct then?





We have the derivative y’ = 4x3– 4(1 – m .)2) x

\(y’ = 0 \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
{x^2} = 1 – {m^2}
\end{array} \right.\)

Hàm số có cực đại, cực tiểu khi và chỉ khi -1 < m <1  

Tọa độ điểm cực trị 

\(\begin{array}{l}
A\left( {0;m + 1} \right);\;B\left( {\sqrt {1 – {m^2}} ; – {m^4} + 2{m^2} + m} \right);\;C\left( { – \sqrt {1 – {m^2}} ; – {m^4} + 2{m^2} + m} \right);\\
\overrightarrow {BC}  = ( – 2\left( {\sqrt {1 – {m^2}} ;0} \right)
\end{array}\)

Phương trình đường thẳng BC: y+ m4- 2m2- m=0

d( A: BC) = m4-2m2+ 1,

jQuery(document).ready(function($) { $('#facebook-after-2360').sharrre({ share: { facebook: true }, urlCurl: 'https://qamath.com/wp-content/plugins/genesis-simple-share/assets/js/sharrre/sharrre.php', enableHover: false, enableTracking: true, disableCount: true, buttons: { }, click: function(api, options){ api.simulateClick(); api.openPopup('facebook'); } }); $('#twitter-after-2360').sharrre({ share: { twitter: true }, urlCurl: 'https://qamath.com/wp-content/plugins/genesis-simple-share/assets/js/sharrre/sharrre.php', enableHover: false, enableTracking: true, buttons: { }, click: function(api, options){ api.simulateClick(); api.openPopup('twitter'); } }); $('#pinterest-after-2360').sharrre({ share: { pinterest: true }, urlCurl: 'https://qamath.com/wp-content/plugins/genesis-simple-share/assets/js/sharrre/sharrre.php', enableHover: false, enableTracking: true, buttons: { }, click: function(api, options){ api.simulateClick(); api.openPopup('pinterest'); } }); $('#linkedin-after-2360').sharrre({ share: { linkedin: true }, urlCurl: 'https://qamath.com/wp-content/plugins/genesis-simple-share/assets/js/sharrre/sharrre.php', enableHover: false, enableTracking: true, buttons: { }, click: function(api, options){ api.simulateClick(); api.openPopup('linkedin'); } }); });

Related Articles:

  1. Question 3: Find all real values ​​of parameter m so that the function (y=(m+1) x^{4}-mx^{2}+frac{3}{2}) has only minima without maxima.
  2. Question 2: Find all real values ​​of parameter m so that the function (y=x^{3}-3 mx^{2}+(m-1) x+2) has a maximum and a minimum and the extreme points of the graph of the function have positive coordinates.
  3. Question 1: Find all real values ​​of parameter m so that the graph of the function (y=-x^{3}+3 m x+1) has 2 extreme points A, B such that the triangle OAB is square at O ​​(where O is the origin)
  4. Question 24: Find the maximum point of the function (y = x³ – 3x + 2)
  5. Question 23: Find the minimum point of the function (y = x³ – 3x² + 2.)
  6. Question 22: Find the maximum of the function (y = -x³ + 3x – 4)
  7. Question 21: Find the minimum (minimum value) (y_{CT}) of the function (y = -x³ + 3x – 4)
  8. Question 20: Find the maximum point of the function (y = x⁴ – 2x² + 2)
  9. Question 19: Find the maximum point of the graph of the function y = x³ – 3x + 2.
  10. Question 18: Find the maximum point of the function (y=frac{x^4+4}{x})

Category: Functions and applicationsTag: extremum of a functional

Previous Post: « Question 16: Find the values ​​of the parameter m so that the graph of the function y = 2×3+ 3( m-3) x2+ 11- 3m has two extreme points. At the same time, those two extreme points and the point C( 0; -1) are collinear
Next Post: Question 18: Find all values ​​of parameter m so that the graph of the function y = x3-3( m+1) x2+ 12mx-3m+ 4 (C) has two extreme points A and B such that these two points together with the point C(-1; -9/2) form a triangle with the origin as the center of gravity. »

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Recent Posts

  • Question 50: Choose the most correct sentence?
  • Question 50: The result of division \(\frac{3}{4}{(xy)^3}:\left( { – \frac{1}{2}{x^2}{y^2}} \right) \) is:
  • Question 49: Which of the following statements is false?
  • Question 49: Perform division \( {\left( { – {x^3}y} \right)^5}:\left( { – {x^{12}}{y^2}} \right) \) I get
  • Question 48: R intersects I =

Categories

  • Fractions (100)
  • Functions and applications (1,013)
  • Grade 10 Math (38)
  • Grade 11 Math (42)
  • Grade 12 Math (62)
  • Integers (249)
  • Natural numbers (210)
  • Plane geometry (20)
  • Polynomial (294)
  • QA Grade 1 Math (181)
  • QA Grade 2 Math (259)
  • QA Grade 3 Math (254)
  • QA Grade 4 Math (195)
  • QA Grade 5 Math (228)
  • QA Grade 6 Math (67)
  • QA Grade 7 Math (58)
  • QA Grade 8 Math (74)
  • QA Grade 9 Math (61)
  • Rational numbers (548)
  • Set (160)
  • Home
  • ABOUT US
  • Privacy Policy
  • Contact Us
  • Sitemap

Copyright © 2022 · Question and Anwer Mathematics online. LLODO - Question Answer English- Question Answer QANDA- Q&A ORGANIC