• Menu
  • Skip to primary navigation
  • Skip to secondary navigation
  • Skip to main content
  • Skip to primary sidebar

QA Math

Question Anwer Mathematics online

  • QA Grade 1 Math
  • QA Grade 2 Math
  • QA Grade 3 Math
  • QA Grade 4 Math
  • QA Grade 5 Math
  • Search
  • Home
  • ABOUT US
  • Privacy Policy
  • Contact Us
  • Sitemap
  • QA Grade 1 Math
  • QA Grade 2 Math
  • QA Grade 3 Math
  • QA Grade 4 Math
  • QA Grade 5 Math
  • Search
You are here: Home / Functions and applications / Question 2: The function (y = frac{1}{3}{x^3} – left( {m + 1} right){x^2} + left( {2{m^2} + 1} right)x + m) is minimized at x = 1 when

Question 2: The function (y = frac{1}{3}{x^3} – left( {m + 1} right){x^2} + left( {2{m^2} + 1} right)x + m) is minimized at x = 1 when

14/08/2021 //  by admin//  Leave a Comment

Question 2: The function \(y = \frac{1}{3}{x^3} – \left( {m + 1} \right){x^2} + \left( {2{m^2} + 1} \right)x + m\) is minimized at x = 1 when





y’ = x2 – 2(m + 1)x + (2m .)2 + 1)

y” = 2x – 2(m + 1)

y = – (m + 1)x2 + (2m2 + 1)x + m is minimized at x = 1

\(\begin{array}{l}
\Rightarrow \left\{ \begin{array}{l}
y’\left( 1 \right) = 0\\
y”\left( 1 \right) > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
2{m^2} – 2m = 0\\
– 2m > 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
\left[\begin{array}{l}[\begin{array}{l}
m = 0\\
m = 1
\end{array} \right.\\
m < 0
\end{array} \right.
\end{array}\)

So there is no value of m for the function to be minimized at x = 1.

===============

Related Articles:

  1. Question 3: Find all real values ​​of parameter m so that the function (y=(m+1) x^{4}-mx^{2}+frac{3}{2}) has only minima without maxima.
  2. Question 2: Find all real values ​​of parameter m so that the function (y=x^{3}-3 mx^{2}+(m-1) x+2) has a maximum and a minimum and the extreme points of the graph of the function have positive coordinates.
  3. Question 1: Find all real values ​​of parameter m so that the graph of the function (y=-x^{3}+3 m x+1) has 2 extreme points A, B such that the triangle OAB is square at O ​​(where O is the origin)
  4. Question 24: Find the maximum point of the function (y = x³ – 3x + 2)
  5. Question 23: Find the minimum point of the function (y = x³ – 3x² + 2.)
  6. Question 22: Find the maximum of the function (y = -x³ + 3x – 4)
  7. Question 21: Find the minimum (minimum value) (y_{CT}) of the function (y = -x³ + 3x – 4)
  8. Question 20: Find the maximum point of the function (y = x⁴ – 2x² + 2)
  9. Question 19: Find the maximum point of the graph of the function y = x³ – 3x + 2.
  10. Question 18: Find the maximum point of the function (y=frac{x^4+4}{x})

Category: Functions and applicationsTag: extremum of a functional

Previous Post: « Question 1: Set all values ​​of the real parameter m such that the function (y = frac{{{x^2} + x + {m^2}}}{{x + 1}} ) reaches a maximum at x = 1 which is
Next Post: Question 3: x = 2 is not the maximum point of which of the following functions? »

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Recent Posts

  • Question 50: Choose the most correct sentence?
  • Question 50: The result of division \(\frac{3}{4}{(xy)^3}:\left( { – \frac{1}{2}{x^2}{y^2}} \right) \) is:
  • Question 49: Which of the following statements is false?
  • Question 49: Perform division \( {\left( { – {x^3}y} \right)^5}:\left( { – {x^{12}}{y^2}} \right) \) I get
  • Question 48: R intersects I =

Categories

  • Fractions (100)
  • Functions and applications (1,013)
  • Grade 10 Math (38)
  • Grade 11 Math (42)
  • Grade 12 Math (62)
  • Integers (249)
  • Natural numbers (210)
  • Plane geometry (20)
  • Polynomial (294)
  • QA Grade 1 Math (181)
  • QA Grade 2 Math (259)
  • QA Grade 3 Math (254)
  • QA Grade 4 Math (195)
  • QA Grade 5 Math (228)
  • QA Grade 6 Math (67)
  • QA Grade 7 Math (58)
  • QA Grade 8 Math (74)
  • QA Grade 9 Math (61)
  • Rational numbers (548)
  • Set (160)
  • Home
  • ABOUT US
  • Privacy Policy
  • Contact Us
  • Sitemap

Copyright © 2022 · Question and Anwer Mathematics online. LLODO - Question Answer English- Question Answer QANDA- Q&A ORGANIC