Question 32: Given the function \(y=\frac{mx+2m–3}{x–m}\) (m is a parameter). Find all values of m such that the function is inverse on the interval \((2;+\infty)\)
TXĐ: \(D=R \backslash\{m\}\)
We have: \(y^{\prime}=\frac{-m^{2}-2 m+3}{(xm)^{2}}\)
The above inverse function \((2;+\infty)\) IFF
\(\left\{\begin{array}{l} y^{\prime}<0 \\ m \notin(2 ;+\infty) \end{array} \Leftrightarrow\left\{\begin{array} {l} -m^{2}-2 m+3<0 \\ m \leq 2 \end{array} \Leftrightarrow\left\{\begin{array}{l} {\left[\begin{array}{l}m>1\\m<-3\end{array}{\Leftrightarrow}\left[\begin{array}{l}1
===============