Question 4: Find the minimum point of the function \(y = \frac{1}{3}{x^3} – 2{x^2} + 3x + 1\)
Deterministic Set \(D = \mathbb{R}\)
We have \(y’ = {x^2} – 4x + 3\)
\(y’ = 0 \Leftrightarrow x = 1 \vee x = 3\)
\(y” = 2x – 4\)
+) \(y”(1) = – 2 < 0\). The function reaches its maximum at the point x = 1.
+) \(y”(3) = 2 > 0\). The function reaches its minimum at the point x = 3.
===============