• Menu
  • Skip to primary navigation
  • Skip to secondary navigation
  • Skip to main content
  • Skip to primary sidebar

QA Math

Question Anwer Mathematics online

  • QA Grade 1 Math
  • QA Grade 2 Math
  • QA Grade 3 Math
  • QA Grade 4 Math
  • QA Grade 5 Math
  • Search
  • Home
  • ABOUT US
  • Privacy Policy
  • Contact Us
  • Sitemap
  • QA Grade 1 Math
  • QA Grade 2 Math
  • QA Grade 3 Math
  • QA Grade 4 Math
  • QA Grade 5 Math
  • Search
You are here: Home / Functions and applications / Question 46: Given the function (fleft( x right)) whose upper derivative satisfies (left| {fleft( {x + h} right) – fleft( {x – h} right)} right| le {h^2}) for all , h > 0. Set (gleft( x right) = {left[ {x + f’left( x right)} right]^{2019}} + {left[ {x + f’left( x right)} right]^{29 – m}} – left( {{m^4} – 29{m^2} + 100} right). {sin ^2}x – 1) with parameter m. Let S be the set of all integer values ​​of m < 27 such that (gleft( x right)) is minimized at x = 0. The sum of the squares of the elements of S is

Question 46: Given the function (fleft( x right)) whose upper derivative satisfies (left| {fleft( {x + h} right) – fleft( {x – h} right)} right| le {h^2}) for all , h > 0. Set (gleft( x right) = {left[ {x + f’left( x right)} right]^{2019}} + {left[ {x + f’left( x right)} right]^{29 – m}} – left( {{m^4} – 29{m^2} + 100} right). {sin ^2}x – 1) with parameter m. Let S be the set of all integer values ​​of m < 27 such that (gleft( x right)) is minimized at x = 0. The sum of the squares of the elements of S is

13/08/2021 //  by admin//  Leave a Comment

Question 46: Given the function \(f\left( x \right)\) whose upper derivative satisfies \(\left| {f\left( {x + h} \right) – f\left( {x – h} \right)} \right| \le {h^2}\) for all , h > 0. Set \(g\left( x \right) = {\left[ {x + f’\left( x \right)} \right]^{2019}} + {\left[ {x + f’\left( x \right)} \right]^{29 – m}} – \left( {{m^4} – 29{m^2} + 100} \right). {\sin ^2}x – 1\) with parameter m. Let S be the set of all integer values ​​of m < 27 such that \(g\left( x \right)\) is minimized at x = 0. The sum of the squares of the elements of S is





For all and h > 0, we have

\(\left| {f\left( {x + h} \right) – f\left( {x – h} \right)} \right| \le {h^2} \Leftrightarrow \frac{{\left | {f\left( {x + h} \right) – f\left( x \right) + f\left( x \right) – f\left( {x – h} \right)} \right|} }{h} \le h\)

\(\left| {\frac{{f\left( {x + h} \right) – f\left( x \right)}}{h} + \frac{{f\left( {x – h} \right) – f\left( x \right)}}{{ – h}}} \right| \le h\).

Given \(h \to 0\), we get \(f’\left( x \right) = 0\). Then \(g\left( x \right) = {x^{2019}} + {x^{29 – m}} – \left( {{m^4} – 29{m^2} + 100} \right) {\sin ^2}x – 1\)

\(g’\left( x \right) = 2019{x^{2018}} + \left( {29 – m} \right){x^{28 – m}} – \left( {{m^4) } – 29{m^2} + 100} \right)\sin 2x \Rightarrow g’\left( 0 \right) = 0\)

Consider \(g”\left( x \right) = 2019.2018{x^{2017}} + \left( {29 – m} \right)\left( {28 – m} \right){x^{27 – m}} – 2\left( {{m^4} – 29{m^2} + 100} \right)\cos 2x\)

\( \Rightarrow g”\left( 0 \right) = – 2\left( {{m^4} – 29{m^2} + 100} \right)\)

*) If \(g”\left( 0 \right) = 0 \Leftrightarrow {m^4} – 29{m^2} + 100 = 0 \Leftrightarrow \left[\begin{array}{l}m=\pm5\\m=\pm2\end{array}\right\)[\begin{array}{l}m=\pm5\m=\pm2\end{array}\right\)

+ If m = 5 then \(g’\left( x \right) = 2019{x^{2018}} + 24{x^{23}} = {x^{23}}\left( {2019{x) ^{1995}} + 24} \right)\) change the sign from negative to positive when passing x = 0 so the requirement is satisfied.

+ If m = – 5 then \(g’\left( x \right) = 2019{x^{2018}} + 34{x^{33}} = {x^{33}}\left( {2019{ x^{1985}} + 34} \right)\) changes the sign from negative to positive when passing x = 0 so the requirement is satisfied.

+ If m = 2 then \(g’\left( x \right) = 2019{x^{2018}} + 27{x^{26}} = {x^{26}}\left( {2019{x) ^{1992}} + 27} \right)\) does not change sign when x = 0 so it is eliminated.

+ If m = – 2 then \(g’\left( x \right) = 2019{x^{2018}} + 31{x^{30}} = {x^{30}}\left( {2019{ x^{1988}} + 31} \right)\) does not change sign when x = 0 so it is eliminated.

*) If \(g”\left( x \right) \ne 0\) then \(g\left( x \right)\) is minimized at \(x = 0 \Leftrightarrow g”\left( 0 \ right) > 0 \Leftrightarrow – 2\left( {{m^4} – 29{m^2} + 100} \right) > 0\)

\(\Leftrightarrow {m^4} – 29{m^2} + 100 < 0 \Leftrightarrow 4 < {m^2} < 25\). Since m is integer, \(m \in \left\{ { – 4; – 3;3;4} \right\}\)

So \(S = \left\{ { – 5; – 4; – 3;3;4;5} \right\}\). So the sum of the squares of the elements of S is 100.

===============

Related Articles:

  1. Question 3: Find all real values ​​of parameter m so that the function (y=(m+1) x^{4}-mx^{2}+frac{3}{2}) has only minima without maxima.
  2. Question 2: Find all real values ​​of parameter m so that the function (y=x^{3}-3 mx^{2}+(m-1) x+2) has a maximum and a minimum and the extreme points of the graph of the function have positive coordinates.
  3. Question 1: Find all real values ​​of parameter m so that the graph of the function (y=-x^{3}+3 m x+1) has 2 extreme points A, B such that the triangle OAB is square at O ​​(where O is the origin)
  4. Question 24: Find the maximum point of the function (y = x³ – 3x + 2)
  5. Question 23: Find the minimum point of the function (y = x³ – 3x² + 2.)
  6. Question 22: Find the maximum of the function (y = -x³ + 3x – 4)
  7. Question 21: Find the minimum (minimum value) (y_{CT}) of the function (y = -x³ + 3x – 4)
  8. Question 20: Find the maximum point of the function (y = x⁴ – 2x² + 2)
  9. Question 19: Find the maximum point of the graph of the function y = x³ – 3x + 2.
  10. Question 18: Find the maximum point of the function (y=frac{x^4+4}{x})

Category: Functions and applicationsTag: extremum of a functional

Previous Post: « Question 45: Given the function (fleft( x right) = {x^2} – 2mleft| {x – m + 5} right| + {m^3} – {m^2} + 1.) How many integer values ​​of parameter m are in the segment (left[ { – 20;20} right]) so that the given function has exactly one extreme point
Next Post: Question 47: Let the function (y = fleft( x right)) be continuous and defined above and have a graph as shown. Number of integer values ​​of parameter m to function (y = left| {{{left( {fleft( x right)} right)}^2} + 2mfleft( x right) + 2m + 35} right|) has exactly 3 extreme points »

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Recent Posts

  • Question 50: Choose the most correct sentence?
  • Question 50: The result of division \(\frac{3}{4}{(xy)^3}:\left( { – \frac{1}{2}{x^2}{y^2}} \right) \) is:
  • Question 49: Which of the following statements is false?
  • Question 49: Perform division \( {\left( { – {x^3}y} \right)^5}:\left( { – {x^{12}}{y^2}} \right) \) I get
  • Question 48: R intersects I =

Categories

  • Fractions (100)
  • Functions and applications (1,013)
  • Grade 10 Math (38)
  • Grade 11 Math (42)
  • Grade 12 Math (62)
  • Integers (249)
  • Natural numbers (210)
  • Plane geometry (20)
  • Polynomial (294)
  • QA Grade 1 Math (181)
  • QA Grade 2 Math (259)
  • QA Grade 3 Math (254)
  • QA Grade 4 Math (195)
  • QA Grade 5 Math (228)
  • QA Grade 6 Math (67)
  • QA Grade 7 Math (58)
  • QA Grade 8 Math (74)
  • QA Grade 9 Math (61)
  • Rational numbers (548)
  • Set (160)
  • Home
  • ABOUT US
  • Privacy Policy
  • Contact Us
  • Sitemap

Copyright © 2022 · Question and Anwer Mathematics online. LLODO - Question Answer English- Question Answer QANDA- Q&A ORGANIC