• Menu
  • Skip to primary navigation
  • Skip to secondary navigation
  • Skip to main content
  • Skip to primary sidebar

QA Math

Question Anwer Mathematics online

  • QA Grade 1 Math
  • QA Grade 2 Math
  • QA Grade 3 Math
  • QA Grade 4 Math
  • QA Grade 5 Math
  • Search
  • Home
  • ABOUT US
  • Privacy Policy
  • Contact Us
  • Sitemap
  • QA Grade 1 Math
  • QA Grade 2 Math
  • QA Grade 3 Math
  • QA Grade 4 Math
  • QA Grade 5 Math
  • Search
You are here: Home / Functions and applications / Question 48: How many integer values ​​of parameter m are there for the function (y = {x^8} + left( {m – 2} right){x^5} – left( {{m^) 2} – 4} right){x^4} + 1) is minimized at x = 0

Question 48: How many integer values ​​of parameter m are there for the function (y = {x^8} + left( {m – 2} right){x^5} – left( {{m^) 2} – 4} right){x^4} + 1) is minimized at x = 0

14/08/2021 //  by admin//  Leave a Comment

Question 48: How many integer values ​​of parameter m are there for the function \(y = {x^8} + \left( {m – 2} \right){x^5} – \left( {{m^) 2} – 4} \right){x^4} + 1\) is minimized at x = 0





We have \(y = {x^8} + \left( {m – 2} \right){x^5} – \left( {{m^2} – 4} \right){x^4} + 1 \Rightarrow y’ = 8{x^7} + 5\left( {m – 2} \right){x^4} – 4\left( {{m^2} – 4} \right){x^ 3}\).

\(y’ = 0 \Leftrightarrow {x^3}\left( {8{x^4} + 5\left( {m – 2} \right)x – 4\left( {{m^2} – 4)) } \right)} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\g\left( x \right) = 8{x^4} + 5\left( {m – 2} \right)x – 4\left( {{m^2} – 4} \right) = 0\end{array} \right.\)

Xét hàm số \(g\left( x \right) = 8{x^4} + 5\left( {m – 2} \right)x – 4\left( {{m^2} – 4} \right)\) có \(g’\left( x \right) = 32{x^3} + 5\left( {m – 2} \right)\).

Ta thấy \(g’\left( x \right) = 0\) có một nghiệm nên \(g\left( x \right) = 0\) có tối đa hai nghiệm

+ TH1: Nếu \(g\left( x \right) = 0\) có nghiệm \(x = 0 \Rightarrow m = 2\) hoặc m = – 2

Với m = 2 thì x = 0 là nghiệm bội 4 của \(g\left( x \right)\). Khi đó x = 0 là nghiệm bội 7 của y’ và y’ đổi dấu từ âm sang dương khi đi qua điểm x = 0 nên x = 0 là điểm cực tiểu của hàm số. Vậy m = 2 thỏa ycbt.

Với m = – 2 thì \(g\left( x \right) = 8{x^4} – 20x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \sqrt[3]{{\frac{5}{2}}}\end{array} \right.\).

Variation table

Based on BBT x = 0 is not the minimum point of the function. So m = – 2 does not satisfy ycbt.

+ TH2: \(g\left( 0 \right) \ne 0 \Leftrightarrow m \ne \pm 2\). Let the function be minimized at \(x = 0 \Leftrightarrow g\left( 0 \right) > 0 \Leftrightarrow {m^2} – 4 < 0 \Leftrightarrow – 2 < m < 2\).

So \(m \in \left\{ { – 1;0;1} \right\}\).

So in both cases we get 4 integer values ​​of m that satisfy ycbt.

===============

Related Articles:

  1. Question 3: Find all real values ​​of parameter m so that the function (y=(m+1) x^{4}-mx^{2}+frac{3}{2}) has only minima without maxima.
  2. Question 2: Find all real values ​​of parameter m so that the function (y=x^{3}-3 mx^{2}+(m-1) x+2) has a maximum and a minimum and the extreme points of the graph of the function have positive coordinates.
  3. Question 1: Find all real values ​​of parameter m so that the graph of the function (y=-x^{3}+3 m x+1) has 2 extreme points A, B such that the triangle OAB is square at O ​​(where O is the origin)
  4. Question 24: Find the maximum point of the function (y = x³ – 3x + 2)
  5. Question 23: Find the minimum point of the function (y = x³ – 3x² + 2.)
  6. Question 22: Find the maximum of the function (y = -x³ + 3x – 4)
  7. Question 21: Find the minimum (minimum value) (y_{CT}) of the function (y = -x³ + 3x – 4)
  8. Question 20: Find the maximum point of the function (y = x⁴ – 2x² + 2)
  9. Question 19: Find the maximum point of the graph of the function y = x³ – 3x + 2.
  10. Question 18: Find the maximum point of the function (y=frac{x^4+4}{x})

Category: Functions and applicationsTag: extremum of a functional

Previous Post: « Question 47: Let the function (y = fleft( x right)) be continuous and defined above and have a graph as shown. Number of integer values ​​of parameter m to function (y = left| {{{left( {fleft( x right)} right)}^2} + 2mfleft( x right) + 2m + 35} right|) has exactly 3 extreme points
Next Post: Question 49: Given two polynomial functions (y = fleft( x right), y = gleft( x right)) whose graphs are two curves in the figure. Knowing that the function graph (y = fleft( x right)) has exactly one extreme point A, the function graph (y = gleft( x right)) has exactly one extreme points are B and (AB = frac{7}{4}). How many integer values ​​of parameter m are in the interval (left( { – 5;5} right)) for the function (y = left| {left| {fleft( x right) ) – gleft( x right)} right| + m} right|) has exactly 5 extremes? »

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Recent Posts

  • Question 50: Choose the most correct sentence?
  • Question 50: The result of division \(\frac{3}{4}{(xy)^3}:\left( { – \frac{1}{2}{x^2}{y^2}} \right) \) is:
  • Question 49: Which of the following statements is false?
  • Question 49: Perform division \( {\left( { – {x^3}y} \right)^5}:\left( { – {x^{12}}{y^2}} \right) \) I get
  • Question 48: R intersects I =

Categories

  • Fractions (100)
  • Functions and applications (1,013)
  • Grade 10 Math (38)
  • Grade 11 Math (42)
  • Grade 12 Math (62)
  • Integers (249)
  • Natural numbers (210)
  • Plane geometry (20)
  • Polynomial (294)
  • QA Grade 1 Math (181)
  • QA Grade 2 Math (259)
  • QA Grade 3 Math (254)
  • QA Grade 4 Math (195)
  • QA Grade 5 Math (228)
  • QA Grade 6 Math (67)
  • QA Grade 7 Math (58)
  • QA Grade 8 Math (74)
  • QA Grade 9 Math (61)
  • Rational numbers (548)
  • Set (160)
  • Home
  • ABOUT US
  • Privacy Policy
  • Contact Us
  • Sitemap

Copyright © 2022 · Question and Anwer Mathematics online. LLODO - Question Answer English- Question Answer QANDA- Q&A ORGANIC