Question 37: Collapse \(\begin{aligned} &A=x^{6}-(x+1) x^{5}+(x+1) x^{4}-(x+1) x ^{3}+(x+1) x^{2}-(x+1) x+x+1 \end{aligned}\) we get
\(\begin{aligned} &A=x^{6}-(x+1) x^{5}+(x+1) x^{4}-(x+1) x^{3}+(x +1) x^{2}-(x+1) x+x+1 \\ &A=x^{6}-x^{6}-x^{5}+x^{5}+x^{ 4}-x^{4}-x^{3}+x^{3}+x^{2}-x^{2}-x+x+1 \\ &A=1 \end{aligned}\)
===============